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Abstract—Themainmethod to achieve fault-tolerant network systems is by exploiting and effectively utilizing the edge-disjoint and/or

inner-vertex-disjoint paths between pairs of source and destination vertices. Completely independent spanning trees (CISTs for short)

are powerful tools for reliable broadcasting/unicasting and securemessage distribution. Particularly, it has been shown that two CISTs

have an application on configuring a protection routing in IP networks, such asmobile ad hoc networks and relatively large (static)

network topologies with scalability in [IEEE/ACMTrans. Netw., 27 (2019) 1112-1123]. Many results focus on CISTs in specific networks

in the literature, however, few results are given on an infinite class of networks having common properties. In this article, we prove the

existence of dual-CISTs in an infinite number of networks satisfying someHamilton sufficient conditions. A unique algorithm to construct

a CIST-partition is proposed, which can be applied to not only many kinds of networks, but our algorithm can also be implemented very

easily in parallel or distributed systems satisfying the conditions. In addition, wemake a comparative analysis between the proposed

conditions and several known results on an infinite number of networks, the advantage of our result is significant. In particular, the bound

in our conditions is sharp. The results will provide a powerful framework for the design of fault-tolerant network topologies and routing

protocols for future networks.

Index Terms—Completely independent spanning trees, a protection routing, CIST-partition, Hamilton bipartition sufficient condition,

constructive algorithm

Ç

1 INTRODUCTION

DISJOINT multipaths from the source to destination that do
not share common vertices and/or edges become an

essential technique to improve the quality-of-service (QoS)
and efficiency of broadcasting in networks.With the enlarge-
ment of the network size, failures are more common than we
might expect. Disjoint multipaths can provide more alterna-
tive and diverse paths which can be selected when fault
damages the network structure, which improves the reliabil-
ity of networks. Designing vertex-disjoint paths and edge-
disjoint paths between the source vertex and the destination
vertex can tolerate faulty vertices and edges respectively.
Fault-tolerant message delivery protocols, reliable broad-
casting/unicasting and secure message distribution are also
implemented by constructing disjoint multipaths on net-
works under the existence of such disjoint paths [3].

To guarantee that all messages can be transmitted
between any two vertices, a spanning tree or a set of span-
ning trees is usually used to realize the broadcasting on a net-
work. Itai and Rodeh [4] first introduced the concept of
independent spanning trees (ISTs for short) to improve load

balancing or transmission error tolerance. ISTs are a set of
spanning trees share the same root vertex such that the paths
from the root to any other vertex of each spanning trees are
edge-disjoint and inner-vertex-disjoint. From then on, a lot
of efficient construction schemes in different networks are
proposed, such as [5] (chordal rings), [6] (multidimensional
torus networks), [7] (transposition networks), [8] (alternating
group networks), [9] (pancake Networks), [10] (enhanced
hypercubes), [11], [12], [13], [14], [15] (hypercube and its var-
iants), and so forth.

By the definition of IST, the application of IST is limited by
the setting of the root vertex, which is not conducive to con-
sidering the broadcasting between any pair of the source ver-
tex and the destination vertex. Based on this reason, the
natation of completely independent spanning trees (CISTs
for short) was suggested byHasunuma [16], which is a gener-
alization of edge-disjoint spanning trees and ISTs. Completely
independent spanning trees are a set of spanning trees such that
the paths joining between any pair of vertices in these trees
are pairwise edge-disjoint and inner-vertex-disjoint. If there
exist k CISTs in the networks, at least one spanning tree can
ensure the message transmission between any pair of
unfaulty vertices under at most k� 1 faulty edges or vertices.
In addition, if the network has a large number of data to
transmit, we can divide it into k parts and let every spanning
tree be responsible for only 1

k data to reduce the load pressure
on edges and increase the throughput.

Hasunuma [17] had proved that determining whether a
graph G admits k CISTs is NP-complete, even for k ¼ 2. He
also conjectured that every 2k-connected graph admits k
CISTs. However, P�eterfalvi [18] disproved the conjecture by
showing that for every k � 2, there exists a k-connected
graph which does not admit two CISTs. After that, one of the
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important research directions is exploring completely inde-
pendent spanning trees in some special graphs and intercon-
nection networks. The existence and construction of multiple
CISTs in graphs and networks can be referred to [16], [19],
[20], [21], [22] for some certain classes of graphs, [23], [24],
[25], [26], [27], [28] for hypercube and its variants, [29], [30],
[31] for date center networks, and [2], [32] for Cayley graphs.

Constructing more CISTs can enhance the ability of fault
tolerance in networks. However, due to the cost and resource
considerations, backup hardware and transmission design
usually allow only one copy in real life, as do for two CISTs,
which is call a dual-CISTs. It has been shown that networks
with a dual-CIST can be fully protected under a random sin-
gle element failure in [1]. An interesting fact is that several
well-known sufficient conditions for Hamiltonian property
ensure the existence of two completely independent span-
ning trees. For example, Araki [33] confirmed that Dirac’s
condition implies the existence of two CISTs. Fan et al. [34]
confirmed that Ore’s condition implies the existence of two
CISTs. Hong et al. and Qin et al. [35], [36] recently proved
that a neighborhood unions condition of Hamiltonian
graphs also implies the existence of two CISTs. Especially,
Hong [37] showed the generalization of Dirac’s condition
implies the existence of k CISTs. For more sufficient condi-
tions for graphs that admit multiple CISTs, see [38], [39].
Recently, Cao et al. [40] gave a new kind of sufficient condi-
tion, called bipartition sufficient condition, of Hamiltonian
graphs. That is, ifG is a simple connected graphwith a vertex
bipartition fS; Tg satisfying the conditions: (1) G½T � is a tree
with t leaves; (2) each vertex in T with degree i inG½T � has at
least jSj þ 1� i neighbors in S; and (3) jSj ¼ t� 1, thenG is a
Hamiltonian graph.

In this paper, we will study the existence of a dual-CISTs
in an infinite class of networks by using the characterization
of CISTs given in [33]. The most significant contribution of
our work is that there exists an infinite number of graphs
which only satisfy our conditions in known results. The
main results of the paper are summarized as follows:

1. Proving the existence of a dual-CISTs in an infinite
class of networks.

2. Proposing a unique algorithm to construct a CIST-
partition in an infinite class of networks.

3. Giving a comparison with the known results based
on the analysis of applications.

The remaining work is organized as follows. Section 2
presents some useful lemmas. Section 3 proves the existence
of two completely independent spanning trees under the
bipartition sufficient condition in the general graph. In Sec-
tion 4, we make a comparison between our results and
some known conclusions and analyze the optimality of the
parameter bound. Finally, a conclusion is given in Section 5.

2 NOTATION AND PRELIMINARIES

It is a common method to regard the interconnection net-
work as a loopless undirected graph G ¼ ðV ðGÞ; EðGÞÞ,
where V ðGÞ denotes the set of processors and EðGÞ denotes
the set of communication links. In this paper, we use graphs
and networks interchangeably. The value of jV ðGÞj is called
the order of G. Two vertices v1; v2 in V ðGÞ are said to be

adjacent if and only if ðv1; v2Þ 2 EðGÞ and v1; v2 are said to be
incident with the edge ðv1; v2Þ, and v1; v2 are called ends of
the edge ðv1; v2Þ. Two edges which are incident with a com-
mon vertex are also said to be adjacent. The neighbor of a ver-
tex u 2 V ðGÞ is a vertex adjacent to u in G. The number of
neighbors of u is called the degree of u in G, denoted by
dGðuÞ. For two disjoint nonempty vertex subsets S and T of
G, we use EðT; SÞ to denote the set of edges between S and
T , and the subgraph of G induced by S is denoted by G½S�
which is a graph whose vertex set is S and whose edge set
consists of all edges of G which have both ends in S. For
two vertices x and y in V ðGÞ, the distance between x and y,
denoted dGðx; yÞ, is the length of the shortest path connect-
ing them. A spanning tree T of a graph G is an acyclic con-
nected subgraph of G such that V ðT Þ ¼ V ðGÞ. A vertex is
said to be a leaf of a tree T if it has degree 1 in T , and an
inner-vertex otherwise. A rooted tree is a tree with a specified
vertex, called the root. For a vertex x in a rooted tree T , we
use T ðxÞ to denote the subtree rooted at x, the ancestors of x
are the vertices on the unique path from x to the root except
itself, descendants of x are vertices in T ðxÞ except itself. Let x
and y be two vertices of G. Two paths joining x and y in G
are openly disjoint if they have no common vertex except for
the two ends x and y. Table 1 shows the notations needed
for the discussion.

To prove the main result, two important equivalent con-
ditions for k completely independent spanning trees pro-
vide tools.

Theorem 1. (See [16]) Spanning trees T1; T2; . . . ; Tk of a graph
G are completely independent spanning trees if and only if they
are edge-disjoint in G and for any v 2 V ðGÞ, there is at most
one Ti such that v is an inner-vertex.

Theorem 2. (See [33]) A connected graph G has k completely
independent spanning trees if and only if there is a partition
fV1; V2; . . . ; Vkg of V ðGÞ such that: ðiÞ the induced subgraph
G½Vi� is connected for every i 2 f1; 2; . . . ; kg and ðiiÞ the bipar-
tite subgraph of G induced by the edge set EðVi; VjÞ has no tree
component for any 1 � i < j � k, denoted by BðVi; Vj; GÞ.
Moreover, the partition fV1; V2; . . . ; Vkg of V ðGÞwhich satisfies
above conditions ðiÞ and ðiiÞ is called a CIST-partition of V ðGÞ.
In Section 1, we have mentioned that several well-known

sufficient conditions for Hamiltonian property ensure the

TABLE 1
Notations Needed for the Discussion

Notation Meaning

V ðGÞ The vertex set of a graphG
EðGÞ The edge set of a graphG
jV ðGÞj The value of jV ðGÞj
ðu; vÞ An edge with two ends u and v
NGðvÞ The neighborhood of the vertex v in G
dGðvÞ The degree of the vertex v in G
dðGÞ The minimum degree of the graphG
EðT; SÞ The set of edges between S and T
G½S� The subgraph induced by edge or vertex set S in G
dGðx; yÞ The distance between vertices x and y in G
T ðxÞ A subtree of T rooted at the vertex x
BðS; T;GÞ A bipartite subgraph of G induced by the edge set

EðS; T Þ

QIN ET AL.: CONSTRUCTION OF DUAL-CISTS ON AN INFINITE CLASS OF NETWORKS 1903

Authorized licensed use limited to: Temple University. Downloaded on August 17,2022 at 04:17:20 UTC from IEEE Xplore.  Restrictions apply. 



existence of two completely independent spanning trees.
The specific conclusions are listed in Theorems 3, 4 and 5.

Theorem 3. (See [33]) Let G be a graph with n vertices for n �
7. If dðGÞ � n

2 , then G has two completely independent span-
ning trees.

Theorem 4. (See [34]) Let G be a graph with n vertices for n >
8. If dðuÞ þ dðvÞ � n for every pair of non-adjacent vertices u
and v, then G has two completely independent spanning trees.

Theorem 5. (See [35], [36]) Let G be a graph with n vertices for
n � 8. If jNðxÞ [NðyÞj � n

2 and jNðxÞ \NðyÞj � 3 for every
pair of non-adjacent vertices x and y, thenG has two completely
independent spanning trees.

To prove the main result, we give the following useful
lemmas.

Lemma 2.1. (See [22]) There are bn2c completely independent
spanning trees in the complete bipartite graph Km;n for all
m � n � 4.

Lemma 2.2. Let T be a tree with t leaves and t � 4. Then

(1) there is no vertex in V ðT Þ with degree more than t.
(2) there is at most one vertex in V ðT Þ with degree t.

Moreover, if dT ðxÞ ¼ t with x 2 V ðT Þ, each vertex in
V ðT Þ n fxg is a leaf or with degree two in T .

(3) there are at most two vertices in V ðT Þwith degree t� 1.

Proof. Let x be a vertex with maximum degree in T and
NT ðxÞ ¼ fx1; x2; . . . ; xsg. Regard T as a tree rooted at x.

1) Let the number of leaves in the subtree T ðxiÞ of T
be yi for every i 2 f1; 2; . . . ; sg. If dT ðxiÞ � 3, then
xi is not a leaf in T ðxiÞ, yi � 2, and T ðxiÞ provides
yi leaves to T . If dT ðxiÞ ¼ 2, then xi is a leaf in
T ðxiÞ, yi � 2, and T ðxiÞ provides yi � 1 leaves to
T . If dT ðxiÞ ¼ 1, then T ðxiÞ is an isolated vertex xi

and T ðxiÞ provides a leaf to T . Thus each T ðxiÞ for
i 2 f1; 2; . . . ; sg provides at least a leaf to the tree
T , and the number of leaves in a tree is at least the
maximum degree of it. Thus (1) holds.

2) If dT ðxÞ ¼ t with x 2 V ðT Þ, then s ¼ t. Since T is a
tree with t leaves, each subtree T ðxiÞ provides
only a leaf to T for i 2 f1; 2; . . . ; tg. Thus T ðxiÞ is a
path or T ðxiÞ is an isolated vertex xi. It implies
that each vertex in V ðT Þ n fxg is a leaf or with
degree two in T . The result (2) holds.

3) If dT ðxÞ ¼ t� 1, then there exists a subtree T ðxiÞ
which provides two leaves to T and each of the
others provides a leaf. Without loss of generality,
assume that T ðx1Þ provides two leaves to T . It
implies that each T ðxjÞ is a path (maybe one ver-
tex) which provides only one leaf to T for j 2
f2; . . . ; t� 1g. Then dT ðx1Þ ¼ 3 or dT ðx1Þ ¼ 2, and
dT ðxjÞ ¼ 2 or dT ðxjÞ ¼ 1 for any j 2 f2; . . . ; t� 1g.

If dT ðx1Þ ¼ 3, then dT ðvÞ ¼ 2 or dT ðvÞ ¼ 1 for any v 2
V ðT Þnfx; x1g. If dT ðx1Þ ¼ 2, the subtree T ðx1Þ has three
leaves including x1. Thus there exists only one vertex in
V ðT ðx1ÞÞ with degree 3 in T ðx1Þ, denoted by y. And
dT ðvÞ ¼ 2 or dT ðvÞ ¼ 1 for any v 2 V ðT Þnfx; yg, which is
less than t� 1. Thus there are at most two vertices with

degree t� 1 if t ¼ 4, otherwise there is at most one vertex
xwith degree t� 1. The result (3) holds. tu

3 THE EXISTENCE OF A DUAL-CISTS ON AN

INFINITE CLASS OF NETWORKS

The following Theorem 6 is our main result.

Theorem 6. Let G be a graph. If the vertex set of G has a bipar-
tition fS; Tg satisfying the following conditions:
(1) G½T � is a tree with t leaves for t � 4;
(2) each vertex in T with degree i in G½T � has at least

jSj þ 1� i neighbors in S;
(3) jSj ¼ t� 1,
then G has a dual-CISTs.

Proof. Let fS; Tg be a bipartition of V ðGÞ satisfying the con-
ditions (1)-(3) in Theorem 6. By deleting some edges in
EðT; SÞ, we can obtain a spanning subgraph H of G such
that fS; Tg is a bipartition of V ðHÞ (where V ðHÞ ¼ V ðGÞ)
which still satisfies the conditions (1) and (3). In addition,
fS; Tg satisfies the condition ð2Þ� that each vertex in T
with degree i in H½T � has exactly jSj þ 1� i neighbors in
S. One knows that a dual-CISTs of H under the condi-
tions (1), ð2Þ� and (3) is also a dual-CISTs of G under the
conditions (1), (2) and (3). Thus we will show thatH has a
dual-CISTs hereinafter.

Let L be the set of leaves inH½T �. By the condition ð2Þ�,
the following Facts 1 and 2 can be obtained directly. tu

Fact 1. In the graph H, each vertex in L is adjacent to all vertices
in S. That is, the graph H½EðL; SÞ� is a complete bipartite
graph.

Fact 2. In the graph H, each vertex in T with degree two in H½T �
is adjacent to all but one vertex in S.

From Theorem 2, it needs to construct a CIST-partition
fV1; V2g of V ðHÞ. The following two parts are considered.

Part I. dH½T �ðvÞ < t for every vertex v 2 T .
We first show that there is a vertex s� 2 S such that

NSðvÞ 6¼ fs�g for each v 2 T . By the contrary, for every ver-
tex s 2 S, there exists one vertex in T , say vs, such that
NSðvsÞ ¼ fsg. By conditions ð2Þ� and (3), one has that
dH½T �ðvsÞ ¼ jSj ¼ t� 1. For different vertices s and r in S, let
vs and vr be vertices in T such that NSðvsÞ ¼ fsg and
NSðvrÞ ¼ frg. Then vs and vr are different. Otherwise,
NSðvsÞ ¼ fs; rg, which is a contradiction. Thus jfvs; s 2
Sgj ¼ t� 1. It derives that there are at least t� 1 vertices in
T with degree t� 1 in H½T �. By Lemma 2.2, there are at
most two vertices in T with degree t� 1 in H½T �. Thus t�
1 � 2, which contradicts with t � 4.

Let V1 ¼ ðT n ft�gÞ [ fs�g and V2 ¼ ðS n fs�gÞ [ ft�g,
where t� is an arbitrary vertex in L. See Fig. 1. We will show
that fV1; V2g is a CIST-partition of V ðHÞ. (The definition of
CIST-partition is shown in Theorem 2.)

Since t� 2 L, H½T n ft�g� is a subtree of H½T �. By t � 4, L n
ft�g is not empty. From Fact 1, s� is connected with all verti-
ces in L n ft�g. Thus H½V1� is connected. Similarly, by Fact 1,
t� is connected with all vertices in the non-empty set S n
fs�g, which derives the connectedness ofH½V2�.

For the bipartite graph BðV1; V2; HÞ, it contains a bipartite
subgraph induced by EðL n ft�g; S n fs�gÞ, denoted by B.
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By Fact 1, jLj � 4 and jSj � 3, one has that B is a complete
bipartite graph and each part has at least two vertices,
which implies that B is a connected graph with at least one
cycle (see red lines in Fig. 1). Since dH½T �ðvÞ < t for any v 2
T , by the condition ð2Þ� and the choice of s�, each vertex in
T n L has a neighbor in S n fs�g. Thus each vertex in T n L
can be connected to B in BðV1; V2; HÞ. Moreover, since
ðs�; t�Þ 2 EðHÞ and t� is adjacent to some vertices in T n L,
the vertices s� and t� are in the component containing B of
BðV1; V2; HÞ. Thus BðV1; V2; HÞ is a component containing B
which is not a tree. See Fig. 1. Thus fV1; V2g is a CIST-parti-
tion of V ðHÞ for Part I.

Part II. There exists a vertex v 2 T such that dH½T �ðvÞ � t.
By Lemma 2.2, there is only one such vertex in T ,

denoted by v, such that dH½T �ðvÞ ¼ t. Moreover, each vertex
in T n fL [ fvgg has degree 2 in H½T �. The tree H½T � is
regarded as a tree rooted at v. Let S ¼ fs1; s2; . . . ; st�1g,
NH½T �ðvÞ ¼ fx1; x2; . . . ; xtg and H½T �ðxiÞ be the subtree of
H½T � rooted at xi (Ti in short) with i 2 f1; 2; . . . ; tg. Note that
Ti is a path. Assume the ends of Ti are xi and yi, where yi 2
L for i 2 f1; 2; . . . ; tg. The vertices yi and xi are the same if
jV ðTiÞj ¼ 1.

Case 1. t � 5.
Assume V1 ¼ V ðT1Þ [ V ðT2Þ [ ð

S t�1
i¼3fsigÞ and V2 ¼

V ðHÞ n V1, that is fvg [ ð
S t

i¼3V ðTiÞÞ [ fs1; s2g. See ðaÞ-ðcÞ in
Fig. 2. We will show that fV1; V2g is a CIST-partition of
V ðHÞ in this case.

From Fact 1, the induced subgraph H½V1� consists of two
paths T1, T2 and a complete bipartite subgraph induced by
Eðfy1; y2g;

S t�1
i¼3fsigÞ, where y1 and y2 are ends of T1 and T2

respectively. See Fig. 2b. Let Y ¼ H½T n ðV ðT1Þ [ V ðT2ÞÞ�. As
we can see, Y is a tree with the leaf set

S t
i¼3fyig. The

induced subgraphH½V2� consists of the tree Y and a complete
bipartite subgraph induced by Eð S t

i¼3fyig; fs1; s2gÞ. See
Fig. 2c. Thus the subgraphsH½V1� andH½V2� are connected.

For the bipartite graph BðV1; V2; HÞ, by Fact 1, it contains
two complete bipartite subgraphs, where one is induced by
Eðfy1; y2g; fs1; s2gÞ, denoted by B1, and the other is induced
by Eð S t

i¼3fyig;
S t�1

j¼3fsjgÞ, denoted by B2. Since t � 5,
both subgraphs B1 and B2 contain a cycle which are shown
in Fig. 2d by green and red lines respectively. By Fact 2 and
t � 5, every vertex in ðV ðT1Þ [ V ðT2ÞÞ n fy1; y2g � V1 is adja-
cent to at least one vertex in fs1; s2g � V2 and every vertex
in

S t
i¼3ðV ðTiÞ n fyigÞ � V2 is adjacent to some vertices inS t�1

i¼3fsig � V1. Thus ðV ðT1Þ [ V ðT2ÞÞ n fy1; y2g and B1 are
in the same component of BðV1; V2; HÞ and

S t
i¼3ðV ðTiÞ n

fyigÞ and B2 are in the same component of BðV1; V2; HÞ.

Since v is adjacent to both x1 and x2, the bipartite graph
BðV1; V2; HÞ has no tree component, see Fig. 2d. Based on
the discussions and Theorem 2, fV1; V2g is a CIST-partition
of V ðHÞ for t � 5 in Part II.

Case 2. t ¼ 4.
Let I ¼ fi : jV ðTiÞj ¼ 1 for i 2 f1; 2; 3; 4gg.
Subcase 2.1. jIj ¼ 4.
The graph H is isomorphic to a complete bipartite graph

K4;4 with the bipartition ffv; s1; s2; s3g; fx1; x2; x3; x4gg of
V ðHÞ and the edge set Eðfv; s1; s2; s3g; fx1; x2; x3; x4gÞ. By
Lemma 2.1, the graphH admits a dual-CISTs.

Subcase 2.2. 2 � jIj � 3.
Without loss of generality, assume 1 =2 I and f3; 4g � I,

which implies that x1 6¼ y1, x3 ¼ y3 and x4 ¼ y4. Let V1 ¼
fvg [ fV ðT1Þ n fx1gg [ V ðT2Þ [ fs1g and V2 ¼ V ðHÞ n V1,
that is fx1g [ V ðT3Þ [ V ðT4Þ [ fs2; s3g ¼ fx1; y3; y4; s2; s3g.
See Figs. 3a, 3b, and 3c.

The subgraph H½V1� contains two paths T1 n fx1g and T2.
By Fact 1, the ends y1 and y2 of these two paths are adjacent
to s1. In addition, x2 2 V ðT2Þ is adjacent to v, thus H½V1� is
connected shown in Fig. 3b. For the subgraph H½V2�, by
Fact 1, it contains two paths T3, T4 and a complete bipartite
graph induced by Eðfy3; y4g; fs2; s3gÞ, where y3 and y4 are
ends of T3 and T4 respectively. Since 1 =2 I, we have
dH½T �ðx1Þ ¼ 2. By Fact 2, x1 has two neighbors in S, thus x1 is

Fig. 1. The illustration of the bipartition fV1; V2g in Part I.

Fig. 2. The local illustration of ðaÞ H; ðbÞ H½V1�; ðcÞ H½V2� and ðdÞ
BðV1; V2; HÞ, whereH satisfies Case 1 in Part II.
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adjacent to at least one vertex in fs2; s3g. Then H½V2� is con-
nected which is shown in Fig. 3c.

For the bipartite graph BðV1; V2; HÞ, by Fact 1, there are
two complete bipartite subgraphs, where one is induced by
Eðfy1; y2g; fs2; s3gÞ, denoted by B1, and the other is induced
by Eðfy3; y4g; fs1; vgÞ, denoted by B2. Each of the subgraphs
B1 and B2 is a cycle with four vertices shown in Fig. 3d by
green and red lines respectively. Since subtrees T1 and T2

are paths, by Fact 2, each vertex in ðV ðT1Þ n fx1; y1gÞ [
ðV ðT2Þ n fy2gÞ, that is V1 n fv; y1; y2g, is adjacent to at least
one vertex in fs2; s3g � V2. Thus V1 n fvg and B1 are con-
tained in the same component of BðV1; V2; HÞ. Since ðv; x1Þ 2
EðV1; V2Þ, the vertex x1 is in the component of BðV1; V2; HÞ
which containing B2. Thus, the bipartite graph BðV1; V2; HÞ
has no tree component, see Fig. 3d. Thus fV1; V2g is a CIST-
partition of V ðHÞ.

Subcase 2.3. 0 � jIj � 1.
Without loss of generality, assume 1; 2; 3 =2 I, which

implies that dH½T �ðxiÞ ¼ 2 and xi; yi represent different verti-
ces for i 2 f1; 2; 3g. By Facts 1, 2 and jSj ¼ t� 1 ¼ 3, the ver-
tex x3 has two neighbors in S and the vertex x4 has at least
two neighbors in S, then jNSðx3Þ \NSðx4Þj � 1. Without
loss of generality, assume s1 2 NSðx3Þ \NSðx4Þ.

Subcase 2.3.1. NSðuÞ 6¼ fs2; s3g for every u 2 ðV ðT3Þn
fx3; y3gÞ [ ðV ðT4Þ n ðfx4g [ fy4gÞÞ.

Let V1¼fvg [ ðV ðT1Þn fx1gÞ [ V ðT2Þ [ ðV ðT3Þ n fx3; y3gÞ[
ðV ðT4Þ n ðfx4g [ fy4gÞÞ [ fs1g and V2 ¼ V ðGÞ n V1, that is

fx1; x3; x4g [ fy3; y4g [ fs2; s3g. Note that if 4 2 I, that is
x4 ¼ y4, then jV2j ¼ 6; otherwise, jV2j ¼ 7. Figs. 4 and 5 are
illustrations for 4 =2 I and 4 2 I respectively.

The subgraph H½V1� contains paths T1 n fx1g, T2, T3 n
fx3; y3g (if it exists) and T4 n ðfx4g [ fy4gÞ (if it exists). Fact 1
implies that ðy1; s1Þ; ðy2; s1Þ 2 EðH½V1�Þ, then T1 n fx1g, T2

and s1 are in a component of H½V1�. By the assumption of
Subcase 2.3.1, T3 n fx3; y3g (if it exists), T4 n ðfx4g [ fy4gÞ (if
it exists) and s1 are in a component of H½V1�. Since ðv; x2Þ 2
EðH½V1�Þ, the subgraph H½V1� is connected. See Figs. 4b and
5b. For the subgraph H½V2�, by Fact 1, it contains a complete
bipartite graph induced by Eðfy3; y4g; fs2; s3gÞ. Since
dH½T �ðxjÞ � 2 for j 2 f1; 3; 4g, by Facts 1 and 2, xj has at
least two neighbors in S. Then x1; x3 and x4 are adjacent
to some vertices in fs2; s3g. Then H½V2� is connected. See
Figs. 4c and 5c.

For the bipartite graph BðV1; V2; HÞ, by Fact 1, it contains
two complete bipartite subgraphs, where one is induced by
Eðfy1; y2g; fs2; s3gÞ, denoted by B1, and the other is induced
by Eðfx3; x4g; fs1; vgÞ, denoted by B2. The subgraphs B1

and B2 are cycles with four vertices shown in Figs. 4d and
5d by green and red lines respectively. Since every vertex
y in V1 n fv; y1; y2; s1g, that is ðV ðT1Þ n fx1; y1gÞ [ ðV ðT2Þ n
fy2gÞ [ ðV ðT3Þ n fx3; y3gÞ [ ðV ðT4Þ n ðfx4g [ fy4gÞÞ, has degree
two in H½T �, by Fact 2, the vertex y is adjacent to some
vertices in fs2; s3g, which implies that y and B1 are con-
tained in the same component of BðV1; V2; HÞ. Since

Fig. 3. The local illustration of ðaÞ H; ðbÞ H½V1�; ðcÞ H½V2� and ðdÞ
BðV1; V2; HÞ, whereH satisfies Subcase 2.2 in Part II.

Fig. 4. The local illustration of ðaÞ H; ðbÞ H½V1�; ðcÞ H½V2� and ðdÞ
BðV1; V2; HÞ, whereH satisfies Subcase 2.3.1 with jIj ¼ 0.
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ðv; x1Þ; ðy3; s1Þ; ðy4; s1Þ 2 EðV1; V2Þ and s1; v 2 V ðB2Þ, the
bipartite graph BðV1; V2; HÞ has no tree component. Thus
fV1; V2g is a CIST-partition of V ðHÞ.

Subcase 2.3.2. NSðuÞ ¼ fs2; s3g for some u 2 ðV ðT3Þn
fx3; y3gÞ [ ðV ðT4Þ n ðfx4g [ fy4gÞÞ.

Without loss of generality, let x� be the vertex in V ðT3Þ n
fx3; y3g such that NSðx�Þ ¼ fs2; s3g and the distance
dT3ðx�; x3Þ is minimal subject to NSðx�Þ ¼ fs2; s3g. Let V1 ¼
fvg[ðV ðT1Þnfx1gÞ[ V ðT2Þ[ðV ðT3Þnfx3; x

�gÞ[ðV ðT4Þn fx4gÞ
[fs1g and V2 ¼ V ðHÞ n V1 ¼ fx1; x3; x4; x

�g [ fs2; s3g. See
Figs. 6a, 6b, and 6c.

The subgraph H½V1� contains paths T1 n fx1g, T2, two
paths obtained by T3 n fx3; x

�g (if they exist), and T4 n fx4g
(if it exists). Fact 1 brings out ðy1; s1Þ; ðy2; s1Þ; ðy4; s1Þ 2
EðHÞ, thus paths T1 n fx1g, T2 and T4 n fx4g (if it exists) are
connected with s1. Let the two paths obtained by T3 n
fx3; x

�g be P1 and P2 (if they exists), where V ðP1Þ is the set
of ancestors of x� in V ðT3Þ n fx3; x

�g and y3 2 V ðP2Þ. By the
choice of x�, each vertex, say w, in V ðP1Þ satisfy that NSðwÞ 6
¼ fs2; s3g. Also by jNSðwÞj ¼ 2, the vertex w is adjacent to
s1. By Fact 1, y3 in V ðP2Þ is adjacent to s1. Because ðv; x2Þ 2
EðH½V1�Þ, the subgraph H½V1� is connected shown in Fig. 6b.
In the subgraph H½V2�, the vertex x� is adjacent to s2 and s3.
Since dH½T �ðxjÞ � 2 for j 2 f1; 3; 4g, by Facts 1 and 2, xj is
adjacent to at least one of s2 and s3. Then H½V2� is connected
shown in Fig. 6c.

For the bipartite graph BðV1; V2; HÞ, by Fact 1, it contains
two complete bipartite subgraphs, where one is induced by
Eðfy1; y2g; fs2; s3gÞ, denoted by B1, and the other is induced
by Eðfx3; x4g; fs1; vgÞ, denoted byB2. The subgraphsB1 and
B2 are cycles with four vertices shown in Fig. 6d by green
and red lines respectively. By Facts 1 and 2, every vertex in
V1 n fv; y1; y2; s1g, that is ðV ðT1Þ n fx1gÞ [ ðV ðT2Þ n fy2gÞ [
ðV ðT3Þ n fx3; x

�gÞ [ ðV ðT4Þ n fx4gÞ, is adjacent to at least one
vertex in fs2; s3g. Then V1 n fv; s1g and B1 are in the same
component of BðV1; V2; HÞ. In addition, dT3ðx�Þ ¼ 2 and
V ðP2Þ is the set of descendants of x� in T3, thus x

� has a neigh-
bor in V ðP2Þ. Since ðv; x1Þ 2 EðV1; V2Þ and v 2 V ðB2Þ, the ver-
tex x1 andB2 are in the same component ofBðV1; V2;HÞ. As a
result, the bipartite graph BðV1; V2; HÞ has no tree compo-
nent, see Fig. 6d. Thus fV1; V2g is a CIST-partition of V ðHÞ.

Based on the discussions, by Theorem 2, there exists a
dual-CISTs in the graphH, so does G.

Theorem 6 converts readily into the CIST-partition algo-
rithm, see Algorithm 1. The algorithm runs as follows.
Some notations are defined in lines 1-2. By lines 3-8, a new
graph G satisfying the condition ð2Þ� is obtained by deleting
some edges in the original graph G. Lines 11-21 will per-
form if there exists a vertex vi in T having degree at least t
in G½T �, which is corresponding to Part II of Theorem 6. The
CIST-partition is given by the Subroutine Part II. The cases
for t � 5 and t � 4 are treated separately in Subroutine Part

Fig. 5. The local illustration of ðaÞ H; ðbÞ H½V1�; ðcÞ H½V2� and ðdÞ
BðV1; V2; HÞ, whereH satisfies Subcase 2.3.1 with jIj ¼ 1.

Fig. 6. The local illustration of ðaÞ H; ðbÞ H½V1�; ðcÞ H½V2� and ðdÞ
BðV1; V2; HÞ, whereH satisfies Subcase 2.3.2.
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II. Line 2 in Subroutine Part II gives a CIST-partition for t �
5, which is corresponding to Case 1 in Part II in Theorem 6.
For t � 4, lines 3-23 in Subroutine Part II perform. The
CIST-partition is constructed in different ways based on the
cardinality of the variable I defined in line 5. For jIj ¼ 4, the
CIST-partition is given by lines 5-6, which is corresponding
to Subcase 2.1 in Part II. For 2 � jIj � 3, the CIST-partition
is given in lines 7-10, which is corresponding to Subcase 2.2
in Part II in Theorem 6. For 0 � jIj � 1, the CIST-partition is
given in lines 11-22, which is corresponding to Subcase 2.3
in Part II in Theorem 6. Lines 23-24 will perform if there
does not exist a vertex vi in T having degree at least t in
G½T �. This process is corresponding to the analysis in Part I
of Theorem 6. Subroutine Part I is called and returns a
CIST-partition by line 14 in Subroutine Part I.

Algorithm 1. CIST-Partition

Input: A graph G whose vertex set has a bipartition fS; Tg
satisfying consitions ð1Þ � ð3Þ in Theorem 6

Output: A CIST-partition fV1; V2g of V ðGÞ
Let p ¼ jT j, T ¼ fv1; . . . ; vpg and S ¼ fs1; . . . ; st�1g;
Let L be the set of leaves of G½T �;
for i 1 to p do
ai  dGðviÞ � t;
if ai > 0 then
G Delete ai edges in Eðfvig; SÞ from G;
end

end
‘ 1;
while ‘ � p do
if dG½T �ðv‘Þ � t then
Label v‘ as v;
Regard G½T � as a tree rooted at v;
Let NG½T �ðvÞ ¼ fx1; x2; . . . ; xkg;
for ‘ 1 to k do
T‘  the subtree of G½T � rooted at x‘;
y‘  V ðT‘Þ \ L;

end
Call Subroutine Part II;
break

end
‘ ‘þ 1;
if ‘ > p then
Call Subroutine Part I ;

end
end

Wewill give an example to show how Algorithm 1 to find
its CIST-partition. LetG be a graphwith ten vertices satisfying
the conditions (1)-(3) in Theorem 6 shown in Fig. 7a. By lines
3-8 in Algorithm 1, by deleting the edge (3,9), we can obtain a
spanning subgraphH ofG such that fS;Tg is a bipartition of
V ðHÞ which still satisfies the conditions (1), ð2Þ� and (3) in
Theorem 6 shown in Fig. 7b. Since dHð1Þ ¼ t ¼ 4, lines 11-21
will perform and call Subroutine Part II. RegardG½T � as a tree
rooted at the vertex 1. Let T1 (resp. T2, T3 and T4) be the sub-
tree rooted at the vertex 2 (resp. 3, 4 and 5). In Subroutine Part
II, the variable I ¼ f1; 4g, thus jIj ¼ 2. Then lines 8-11 in Sub-
routine Part II will perform. Choose the elements 1 and 4 in I
and 3 not in I. Thuswe can get a CIST-partitionwith two parts
V2 ¼ f2; 4; 5; 9; 10g and V1 ¼ f1; 3; 6; 7; 8g shown in Fig. 7c by
red and blue vertices respectively. The induced subgraphs

H½V1� and H½V2� are shown in Fig. 7c by blue and red
edges respectively and Fig. 7d shows the bipartite graph
BðV1; V2; HÞ.

Subroutine. Part I

i 1;
while i < t do
j 1;
whileNSðvjÞ 6¼ fsig and j � p do
j jþ 1;

end
if j > p then
s�  si;
break

end
i iþ 1;

end
t�  an element in L;
V1  ðT n ft�gÞ [ fs�g, V2  V n V1;
return fV1; V2g

Subroutine. Part II

if t � 5 then
V1  V ðT1Þ [ V ðT2Þ [ ð

S t�1
j¼3fsjgÞ; V2  V ðGÞ n V1;

else
I  fi : jV ðTiÞj ¼ 1 for i 2 f1; 2; 3; 4gg;
if jIj ¼ 4 then
V1  fvg [ S; V2  V ðGÞ n V1;

else if 2 � jIj � 3 then
r1; r2  two elements from I;
r an element from f1; 2; 3; 4g n I;
V2  fxrg [ V ðTr1Þ [ V ðTr2Þ [ fs2; s3g;
V1  V n V2;

else
r1; r2; r3  three elements from f1; 2; 3; 4g n I;
r4  the element in I n fr1; r2; r3g;
s�  an element from NSðxr3Þ \NSðxr4Þ;
X  fxjx 2 ðV ðT3Þ [ V ðT4ÞÞ n ðfx3g [ fy3g [ fx4g [ fy4gÞg and
NSðxÞ ¼ S n fs�g;
ifX 6¼ ; then
x�  the vertex such thatminx2XdTr3 ðx; xr3Þ;
V2  fxr1 ; xr3 ; xr4 ; x

�g [ S n fs�g;
V1  V n V2;

else
V2  fxr1 ; xr3 ; xr4g [ fyr3 ; yr4g [ S n fs�g;
V1  V n V2;

end
end

end
returnfV1; V2g

4 THE ADVANTAGES AND APPLICATIONS OF MAIN

RESULTS

The differences among our results and some known conclu-
sions are analyzed as follows. Moreover, we will show that
the bound of the parameter t in Theorem 6 is tight.

Note 1. There exists an infinite number of graphs which satisfy
the conditions in Theorem 6 and fail the conditions in each of
Theorems 3, 4 and 5.
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In the following, we give examples to support Note 1. For
example, letG be a graphwhich has a bipartition fS; Tg satis-
fying the conditions (1), ð2Þ� and (3) in Theorem 6. Moreover,
assume thatG½T � is a tree rooted at the vertex vwith t leaves,
dG½T �ðvÞ ¼ t and S is an independent set ofG. Let the number
of vertices in T with degree two in G½T � be x. Then jT j ¼
xþ tþ 1 and jSj ¼ t� 1, which implies that jV ðGÞj ¼ xþ 2t.
Let vertices in T with degree two in G½T � be v1; v2; . . . ; vx,
leaves inG½T � be y1; y2; . . . ; yt and S ¼ fs1; s2; . . . ; st�1g.

By Table 2, the minimum degree of G is t. Then t <
jV ðGÞj

2 ¼ xþ2t
2 if x > 0, failing to meet the condition in Theo-

rem 3. Every two leaves yi and yj with i; j 2 f1; . . . ; tg in
G½T � are not adjacent in G, and by Table 2, we have that
dGðyiÞ þ dGðyjÞ ¼ 2t < xþ 2t if x > 0 which fails to meet
the condition in Lemma 4. By Table 3, every two leaves yi
and yj in G½T � with i; j 2 f1; . . . ; tg have that jNGðyiÞ [
NGðyjÞj ¼ tþ 1 < xþ2t

2 for every x > 2, which fails to meet
the condition in Lemma 5. By the arbitrariness of x satisfying
x > 0 or x > 2, there exists an infinite number of graphs in
which the existence of a dual-CISTs can be obtained by Theo-
rem 6, while each of Theorems 3, 4 and 5 does not work.

Note 2. The bound t � 4 for the graph G in Theorem 6 is sharp.

In the following, we give examples to support Note 2. For
example, letG be a graph with a vertex bipartition fS;Tg sat-
isfying the following conditions: ðiÞG½T � is a tree rooted at the
vertex vwith three leaves, where dG½T �ðvÞ ¼ 3; ðiiÞ each vertex
in G½T � with degree i has exactly jSj þ 1� i neighbors in S;

and ðiiiÞ G½S� is an independent set with two vertices. Here
t ¼ 3. Assume that the number of vertices in T with degree
two inG½T � be x. Then jT j ¼ xþ 4 and jSj ¼ 2, which implies
that jV ðGÞj ¼ xþ 6 and jEðG½T �Þj ¼ jT j � 1 ¼ xþ 3. We
have that jEðGÞj ¼ jEðT;SÞj þ jEðGðT ÞÞj ¼ xþ 6þ xþ 3 ¼
2xþ 9. By Theorem 1, two CISTs are edge-disjoint. Since each
spanning tree of G has xþ 5 edges and 2xþ 9 < 2ðxþ 5Þ if
x � 0, the bound t � 4 is sharp.

5 CONCLUSION

It is interesting that several well-known conditions for Ham-
iltonian graphs are also sufficient conditions for completely
independent spanning trees. In this article, we show that a
new Hamiltonian sufficient condition implies the existence
of dual-CISTs in an infinite class of networks, including
irregular network topology. The results obtained here
inspire the researchers to study whether they are some other
sufficient conditions of dual-CISTs. In addition, the condi-
tions in our results provide more novel insights and guide-
line views on the construction of fault-tolerant networks.
Appropriate protection routing can be configurated by the
dual-CISTs in these networks at the same time. By exploring
CISTs in this way will it be possible to move towards a better
understanding of how to design more reliable protection
routing.
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